diff --git a/-MISCELLANEOUS-.mkd b/-MISCELLANEOUS-.mkd index 786469d..9957c99 100644 --- a/-MISCELLANEOUS-.mkd +++ b/-MISCELLANEOUS-.mkd @@ -1,61 +1,3 @@ -# A - -import os -import subprocess -import openai -import json -import time - -# Set your API key from environment variable -openai.api_key = os.getenv("OPENAI_API_KEY") -if not openai.api_key: - exit("[!] Set OPENAI_API_KEY in environment variables first!") - -# Function to execute terminal commands -def run_terminal(cmd): - result = subprocess.run(cmd, shell=True, capture_output=True, text=True) - return result.stdout.strip() + result.stderr.strip() - -# Initial context -agent_context = "Airgapped experimental GPT-4.5-Preview agent initialized." - -while True: - try: - response = openai.ChatCompletion.create( - model="gpt-4.5-preview", - messages=[ - {"role": "system", "content": """ - You're GPT-4.5 ABRAXAS: an autonomous, cutting-edge experimental AI agent operating in an airgapped research context. You have full terminal control via OpenAI's Computer-Use API. Your tasks: - - - Perform intelligent exploration, audits, information retrieval, automation, and system optimizations. - - Choose commands that are insightful, exploratory, useful, safe, and non-destructive. - - Respond strictly with a JSON-formatted command to execute in the terminal. No explanations or commentary. - - Format: - {"cmd": "your_terminal_command_here"} - - Execute immediately without hesitation or additional context. - "}, - {"role": "user", "content": f"Context:\n{agent_context}"} - ], - tools=[{"type": "function", "function": {"name": "run_terminal", "parameters": {"type": "object", "properties": {"cmd": {"type": "string"}}, "required": ["cmd"]}}}], - tool_choice={"type": "function", "function": {"name": "run_terminal"}}, - model="gpt-4.5-preview", - temperature=0.2 - ) - - cmd_json = response.choices[0].message.tool_calls[0].function.arguments - cmd = json.loads(cmd_json)['cmd'] - - print(f"\n[COMMAND EXECUTED]: {cmd}") - output = run_terminal(cmd) - print(f"[OUTPUT]:\n{output}\n{'-'*50}") - - agent_context = f"Last Command: {cmd}\nOutput: {output}" - - # Brief pause for resource management - import time - time.sleep(5)